91 research outputs found

    A grid-based infrastructure for distributed retrieval

    Get PDF
    In large-scale distributed retrieval, challenges of latency, heterogeneity, and dynamicity emphasise the importance of infrastructural support in reducing the development costs of state-of-the-art solutions. We present a service-based infrastructure for distributed retrieval which blends middleware facilities and a design framework to ‘lift’ the resource sharing approach and the computational services of a European Grid platform into the domain of e-Science applications. In this paper, we give an overview of the DILIGENT Search Framework and illustrate its exploitation in the field of Earth Science

    Software-defined networking for ubiquitous healthcare service delivery

    Get PDF
    The growth of the mobile, portable devices and the server-to-server communication through cloud computing increase the network traffic. The dependence of the ubiquitous healthcare service delivery on the network connectivity creates failures that may interrupt or delay the treatment plan with adverse effects in patients’ quality of life even leading to mortality. In the present work, we propose the incorporation of Software Defined Networking (SDN) features in the healthcare domain in order to provide the appropriate bandwidth and guarantee the accurate real time medical data transmission independently of the connectivity of the ISP provider. The SDN controller monitors the network traffic and specifies how traffic should be routed providing load balancing, lower delays and better performance. Finally, the proposed healthcare architecture addresses the SDN scalability challenge by incorporating the logically centralized control plane using multiple distributed controllers. A 2-tier hierarchical overlay is formed among SDN controllers following the principles of peer-to-peer networking

    Thermodynamic glass transition in a spin glass without time-reversal symmetry

    Get PDF
    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure

    The catalytic subunit of the system L1 amino acid transporter (S<i>lc7a5</i>) facilitates nutrient signalling in mouse skeletal muscle

    Get PDF
    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass

    The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction

    Get PDF
    Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction

    Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    Get PDF
    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)

    Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)
    corecore